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There are numerous natural lignocellulosic materials that are readily available and
have been proven to be effective feedstock for bio-hydrogen production.
Currently, the focus, particularly in developing nations, is on utilizing
lignocellulosic waste as feedstock and developing appropriate techniques for
processing it into bioenergy products. The economic viability of lignocellulosic
bioenergy can be a challenge owing to the high cost of enzyme production;
however, this obstacle may be addressed with the development of an effective bio-
system for simultaneous saccharification and fermentation as well as consolidated
biomass processing. Lignocellulosic materials, which primarily consist of
cellulose, hemicellulose, and lignin, are a promising resource for renewable
bioenergy and can be sourced from agricultural, forestry, or wood waste. The
present chapter will cover the details on bio-hydrogen from lignocellulose
materials.

1. Introduction

The global energy crisis stems from the increasing demand for limited natural resources (1).
As the demand for these resources increases, they edge closer to depletion, presenting a pressing
concern. Another problem that dominates the public discussion on energy is climate change. It is the
production of energy that is responsible for 87% of global greenhouse gas emissions. Unfortunately,
non-sustainable fossil fuels like coal, oil, and natural gas are the main energy source for a large chunk
of our country. In addition to depleting fossil resources, their excessive usage results in increased
costs, reduced productivity and lower living standards. Given these conditions, current research is

© 2024 American Chemical Society

D
ow

nl
oa

de
d 

vi
a 

E
SS

 I
N

FL
IB

N
E

T
 P

C
A

 3
 o

n 
A

ug
us

t 2
2,

 2
02

4 
at

 0
8:

39
:3

4 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

 Kothari and Pathania; Green Hydrogen Economy for Environmental Sustainability. Volume 2: Applications, Challenges, and Policies 
ACS Symposium Series; American Chemical Society: Washington, DC, 0. 

mailto:ritu_ens@curaj.ac.in
mailto:ritu2735@gmail.com


directed toward clean and sustainable energy sources, with biofuels emerging as a feasible alternative
(1, 2). At the G20 summit, the global biofuel alliance was formed with the objective of advocating for
the biofuel economy to achieve a sustainable future. This coalition seeks to drive significant progress
in harnessing biomass as a cost-effective alternative feedstock. Various renewable and cost-efficient
energy sources hold potential, including bio-methane, bio-hydrogen, bio-ethanol, bio-butanol, and
bio-methanol (2).

Bio-hydrogen stands out among these alternatives due to its high energy content and cleaner
nature. The climate change imperative has been the main driver of the focus on hydrogen. It is
envisaged that clean hydrogen could meet up to 12% of final energy consumption by 2050. While
hydrogen can be derived from fossil fuels as well as biomass, the production cost of hydrogen from
fossil fuels is considerably higher compared to biomass. The production of hydrogen from biomass
is envisioned to be more sustainable and economically viable. Extensive research is underway on
lignocellulosic materials as feedstock in hydrogen production because they are abundant sources of
complex polysaccharides such as cellulose, hemicellulose, pectin, and lignin (3, 4, 5). Lignocellulosic
feedstock includes agricultural waste, forest wood, forest waste, and other organic sources like
agriculture-based industries. Since lignocellulosic material is challenging to degrade, it can be
converted to biofuel (Table 1). This approach supports sustainable farming methods while also
addressing the energy crisis and pollution issues (6).

On a global scale, India possesses significant potential to accumulate extensive quantities of
agricultural lignocellulosic residual biomass, being the world’s second-largest producer of rice,
sugarcane, and other food grains (4, 5). The Indian government has recently announced a substantial
initiative aiming to replace fossil fuels like crude oil, diesel, and gasoline with lignocellulosic biofuel
by 2040. This endeavor holds the potential of reducing air pollution levels by up to 90%, achieved
through the cessation of stubble burning by farmers and the curbing of emissions from transportation
vehicles, including carbon monoxide, volatile hydrocarbons, nitrogen oxides, formaldehydes, and
particulate (4).

Lignocellulose presents as a complex polymeric substance necessitating preprocessing to
transform it into simpler monomers, referred to as "platform molecules," which can subsequently
undergo further processing into biofuels. The feedstock must undergo depolymerization to match
the platform atoms by disassembling it into its constituent parts, namely cellulose (30–50%),
hemicelluloses (20–30%), and lignin (10–20%) (7). Phenolic chemicals serve as the fundamental
components of lignin; however, controlled delignification and lignin depolymerization may present
technical challenges that require resolution, particularly concerning biofuel blends (8, 9). The
controlled depolymerization of cellulose and hemicellulose, achieved through a combination of
hexose (glucose) and pentose (xylose) sugars, yields essential molecules such as furfural,
5-hydroxymethylfurfural (5-HMF), and levulinic acid. These intermediate monosaccharides serve
as precursors for catalytic conversion into biofuels. However, a challenge arises in utilizing
lignocellulosic materials for biofuel production, as the highest fermentable sugars are predominantly
present in cellulose and hemicellulose. The efficiency of sugar extraction relies on the breakdown
of lignin and complex polysaccharides into simpler monomers. In this context, bio-hydrogen
production from organic wastes emerges as a promising and environmentally friendly alternative
garnering global attention. Biohydrogen, derived from biological sources, represents a viable
substitute for conventional fossil fuels, characterized by clean combustion that generates only water.
The utilization of biomass as feedstocks for H2 production offers numerous environmental and
economic benefits and holds substantial potential in meeting current fuel demands (3).
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In the present chapter, an attempt has been made to describe the feasibility of using
lignocellulosic feedstock as a replacement for petroleum-based products in biohydrogen production.
The details of sources of lignocellulosic biomass, composition, natural pre-treatment techniques, and
its conversion to bio-hydrogen are provided, paving the way to new avenues in the energy sector.

Figure 1. Lignocellulosic biomass sources and structural arrangement.

2. Lignocellulosic Biomass

Lignocellulosic biomass consists of plant dry material comprising carbohydrate polymers such
as cellulose, lignin, and hemicellulose. Each component exhibits distinct chemical behavior, with
cellulose serving as the key element in plant cells. The mechanical strength of structures is attributed
to a linear homopolymer composed of recycled glucose residues linked by β-1,4 linkages, forming
solid stringy bundles (Figure 1). Cellulose particles commonly exhibit two shapes: crystalline and
amorphous. While the majority of cellulose molecules are held together by van der Waals forces
and intermolecular hydrogen bonds in their local environment, a small percentage tends to form
intramolecular hydrogen bonds, enhancing cellulose’s rigidity and stiffness. This characteristic
renders cellulose largely insoluble in water and resistant to most natural solvents (3, 10, 11). It is
widely acknowledged that standard cellulase enzymes are less effective in degrading the crystalline
portion of cellulose, resulting in reduced bio-ethanol yields. Nevertheless, cellulose constitutes
nearly half of the organic carbon in soil, emphasizing the importance of transforming this feedstock
into biofuels. In contrast to cellulose, hemicellulose can be a heteropolymer with short lateral
branches composed of various saccharides, including uronic acids (such as 4-o-methylglucuronic,
D-glucuronic, and D-galacturonic acids), pentoses (xylose, rhamnose, and arabinose), and hexoses
(glucose, mannose, and galactose). These saccharides are linked by (1,4)-glycosidic bonds and
occasionally -(1,3)-glycosidic bonds (Figure 1).

About 90% of its backbone chain comprises xylan linkages, with L-arabinose and β-xylose
constituting the remaining 10%. The type and source of crop residues influence the degree of

119
 Kothari and Pathania; Green Hydrogen Economy for Environmental Sustainability. Volume 2: Applications, Challenges, and Policies 

ACS Symposium Series; American Chemical Society: Washington, DC, 0. 



branching and backbone structure. For instance, xylan is the primary hemicellulose in hardwoods,
whereas glucomannan predominates in softwoods. Unlike cellulose, hemicellulose contains
polymers that are readily depolymerized. Through non-covalent interactions, hemicelluloses
strongly adhere to the cellulose fiber surface. These heteropolysaccharides are believed to play an
intermediary role in cellulose production. Lignin, on the other hand, is a rigid, aromatic,
heterogeneous polymer primarily composed of phenolic monomers such as p-coumaryl, coniferyl,
and synapyl alcohols, typically linked by ether and ester linkages. Lignin provides rigidity to the cell
wall and forms a protective barrier around cellulose and hemicellulose (Figure 1). This polymer,
integral to the cell wall, contributes to its impermeability, resistance against pathogen invasion,
and structural support (6, 11, 12). However, the phenolic monomers resulting from lignin
polymerization inhibit cellulolytic enzymes, hindering fermentation, enzymatic hydrolysis, and
ethanol yield significantly. To produce biofuel through microbial fermentation of sugars, lignin
molecules obstructing enzymatic hydrolysis and fermentation-associated microorganisms must be
removed. Given its presence in various agricultural residues, this non-carbohydrate polymer is
considered a byproduct or residue in bioethanol production (6, 11, 13, 14).

Table 1. Different Types of Lignocellulose Biomass Used for Biohydrogen Production
S. No. Lignocellulosic Feedstock Biohydrogen Productivity Refs

1 Sugarcane bagasse 0.733 mmol H2/g of sugarcane bagasse (14–20)

2 Waste date seeds 146.19 mmol/L

3 Wheat straw 128 mL/L

4 Agave biomass 150 L H2/Kg of Biomass

5 Corncob 132 L H2/Kg of Biomass

6 Corn stover hydrolysate 8.78 – 9.17 mmol H2/g utilized sugar

7 Rice straw 0.66–6.42 mmol H2/g substrate

8 Corncob pine 0.61–5.55 mmol H2/g substrate

9 Wood waste 0.58–5.32 mmol H2/g substrate

3. Bio-hydrogen Generation Using Biomass

The emergence of biohydrogen resulting from microbial metabolism has sparked increased
interest in sustainable energy production from renewable sources in recent years (21). In comparison
to thermochemical processes, microbial processes are considered to be more energy-efficient and
environmentally advantageous. The availability, affordability, carbohydrate content, and
fermentability of biomass all influence its suitability for biohydrogen production (22, 23). This
method primarily focuses on hydrogen production and is recognized for its energy efficiency and
environmental friendliness. The two most commonly used biobased hydrogen production
techniques are dark fermentation and photofermentation. Dark fermentation has gained popularity
due to its high yield, rapid reaction rate, and ability to utilize various organic waste materials as
feedstock (24–30).
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Table 2. General Principles, Advantages, and Disadvantages of Various
Pretreatment Techniques

Pretreatment Factors Effect Advantages Disadvantages Refs

Biological Microbe (fungi, at neutral pH and in both aerobic
and anaerobic condition) or enzyme

Remove lignin Low energy consumption. No
equipment corrosion problems.
Do not produce inhibitors

Long time; Low efficiency (13,
18–20)

Physical Irradiation (electron beam, gamma-ray, microwave)
Electric (pulsed electrical field)
Hydrothermolysis (liquid hot water)
Steam explosion (high pressure steam)

Soften lignin and lignocellulose
structure

Do not produce inhibitors.
Simple process.

Only soften lignin and
lignocellulose structure, still
not break structure to
remove lignin

(13,
18, 20,
21)

Chemical Alkaline extraction (calcium, sodium and ammonia
hydroxide)

Decrease cellulose crystallinity;
Partial or complete hydrolysis of
hemicelluloses; Delignification

Requires short reaction time;
High conversion of
hemicelluloses

Corrosive (13,
18,
20–22)

Acid hydrolysis (carbonic, hydrochloric,
hydrofluoric, nitric, phosphoric, sulfuric)

Requires long reaction time at
low temperatures and low
pressures.

Part of irrecoverable salt
formed.
Corrosive.

(13,
18–22)

Ammonia fiber explosion (AFEX) Requires short reaction time
Not corrosive for equipment
Do not produce inhibitors
Allows recovery of lignin and
ammonia

Not effective with high lignin
biomass;
Requires high pressure

(13,
18–20)

Oxidant (ozone, wet oxidation) Highly effective
Requires short reaction time
Do not produce inhibitors

Expensive;
Good only for low lignin
content.

(13,
19)

Organic solvent (ethanol–water, benzene–water,
ethylene glycol, butanol–water)

High delignification efficiency
Allows solvent reuse
Require short reaction time
Do not produce inhibitors

Some solvents are explosive
and flammable

(13,
18–20)
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Table 2. (Continued). General Principles, Advantages, and Disadvantages of Various
Pretreatment Techniques

Pretreatment Factors Effect Advantages Disadvantages Refs

Protic ionic liquid (PIL) Simple extraction of lignin from
lignocellulosic biomass

High delignification efficiency;
Recovers lignin and recycled PIL;
Requires short reaction time
Do not produce inhibitors

Complicated process (13,
18, 19,
21, 22)
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Table 3. Summary of Pretreatment Methods Employed for Lignocellulosic Materials
Pretreatment Lignocellulose Experimental Conditions Lignin Removal

(%)
Sugar Retaining

(%)
Refs

Biological Corn stover Myrothecium verrucaria;
4 days; 29 °C

42.3% - (31)

Radiata pine Trametes versicolor; 5 weeks; 25 °C 22% 77% (32)

Bamboo culms Punctularia sp. TUFC20056;
12 weeks; 21 °C

>50% - (33)

Chemical Corn stover NH3 15%;12 h; 60 °C; 1:6 w/v 62% 100% glucan
and 85%
of xylan

(25)

Rice straw KOH 0.2 M; 4 h; 30 °C; 1:10 w/v 80% 98% (26)

Corn stalk NaOH 5%; 24 h; 60 °C; 1:20 w/v 71.8% 79.6% (34)

Corn stalk H2SO4 5%; 24 h; 60 °C; 1:20 w/v 64.3% 71.6% (34)

Sugarcane
bagasse

NaOH 1%; 0.5 h; 121 °C; 1:10 w/v 62.3% - (35)

Polar NaOH 0.4 M; 170 °C; 7 min
(combined microwaves)

61.9% - (36)

Elephant grass NaOH 3%; 1 h; 121 °C; 1:10 w/v 81.0% 72.3% glucan
Xylan: no data

(17)

Lignocellulosic biomass, an abundant and cost-effective raw material, can be efficiently utilized
for the environmentally friendly production of high-energy-density biohydrogen through the dark
fermentation process (31, 32).

However, the complex structure and presence of lignin in biomass pose a significant challenge
due to their recalcitrant nature (33), which restricts the access of enzymes to hydrolyzable sugars.
Prior to fermentation, biomass necessitates pretreatment to overcome this obstacle. Various
pretreatment methods, have been documented to reduce biomass recalcitrance. The dark
fermentation of lignocellulosic biomass yields biohydrogen along with other by-products such as
acetate, butyrate, lactate, ethanol, and CH4, which are influenced by the microbes and operating
conditions employed (34–42).

3.1. Pre-treatment

Pretreatment serves as the initial step in preparing lignocellulosic biomass for biohydrogen
production (14). Its primary objective is to disintegrate the lignin matrix, thereby producing
monomers that enzymes can readily target during the subsequent hydrolysis process (13, 15, 16).
The majority of the lignin content dissolves in the aqueous medium and becomes separated from the
cellulose and hemicellulose. To maximize the value of lignocellulose, it is essential to consider the
recovery and utilization of lignin as a value-added product alongside sugars (16, 17). Table 2 presents
a compilation of various pretreatment methods, which can be categorized into three primary classes
based on the nature of the reaction: biological (13, 18–20), physical (13, 18–21), and chemical (13,
18–22) processes.
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Microorganisms, particularly fungi such as brown‑, white‑, and soft-rot fungi, are employed
in biological pretreatment techniques to degrade the lignin matrix using enzymes like peroxidases
and laccase. While this method is cost-effective and environmentally friendly, it typically exhibits
lower delignification efficiency and requires longer treatment times compared to other methods.
However, a study demonstrated that Myrothecium verrucaria can secrete three lignin-degrading
enzymes simultaneously, resulting in the removal of 42.3% of the lignin in maize stover after 96 hours
of treatment. Hydrothermal physical pretreatment methods like steam explosion and irradiation do
not extensively break down lignin, but they do induce material swelling, which facilitates subsequent
treatment steps.

Chemical pretreatment techniques utilize chemical reagents such as acids, alkalis, and solvents,
which are highly efficient and require shorter treatment times. Alkaline pretreatment is the most
extensively researched method due to its cost-effectiveness, although it necessitates large quantities
of acid to adjust the pH to approximately 5 for enzymatic hydrolysis. Acid hydrolysis is more suitable
for acid pretreatment. Pentoses dissolve in the pretreatment liquid phase, and the hemicellulose
structure is readily broken down by chemical pretreatment. However, a significant portion of
pentoses may be lost if the material is washed to remove lignin following chemical delignification.
The efficient synthesis of hydrogen from glucose and xylose derived from lignocellulose is hindered
by the loss of pentoses, primarily xylose. Chemical treatments and size reduction procedures such as
milling and chopping are employed to enhance the pretreatment of lignocellulosic materials (15, 23,
24). Kim and Lee conducted a study on alkaline pretreatment to evaluate delignification, employing
aqueous ammonia soaking (AAS) as a chemical pretreatment method. AAS effectively breaks down
the lignin structure surrounding cellulose and hemicellulose by using aqueous ammonia as a reagent.
Unlike other chemical pretreatment methods, AAS operates at lower temperatures, and ammonia
is not a strong chemical. Consequently, AAS retains a significant fraction of hemicellulose in the
solid material. Kim and Lee’s test on corn stover demonstrated that this method removed 62% of
lignin while preserving 100% of glucan and 85% of xylan after 12 hours (25). In a study by Yadav
et al. (2011), 0.2 M potassium hydroxide (KOH) was utilized to remove lignin from rice straw at
room temperature (around 30 °C) for 4 hours. The result was an 80% removal of lignin with only a
2% loss of sugars (26). In addition to these studies, numerous other research pieces have explored
pretreatment methods for lignocellulosic materials. Table 3 provides a summary of some of these
studies.

Hydrolysis techniques play a pivotal role in the production of biohydrogen from lignocellulosic-
derived glucose and xylose (27, 28). This process involves the liberation of hexoses (mainly glucose)
and pentoses (mainly xylose) from cellulose and hemicelluloses through various methods such as
chemical, biological, and physical methods. Enzymes or chemical reagents serve as catalysts in the
combination of physical procedures with biological or chemical methods. Chemical reagents include
alkalis like sodium hydroxide and acids like sulfuric and hydrochloric acids (24, 29, 30, 43, 44). The
advantages and disadvantages of these methods are delineated; chemical methods are preferred for
hydrolysis. While enzymatic hydrolysis is environmentally friendly, it remains costly due to the high
expense of enzymes. Conversely, chemical methods yield higher sugar quantities in shorter reaction
times, albeit necessitating corrosion-resistant reaction vessels. Nuwamanya et al. (2012) employed
hydrolysis methods involving enzymes, dilute, or concentrated chemical reagents (such as NaOH
and HCl) to extract sugar from non-food parts of cassava (untreated) (30). They reported a 47%
sugar recovery through the enzymatic method and a 56% recovery through either NaOH or HCl
hydrolysis.
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Acid hydrolysis surpasses alkali hydrolysis in reducing the amount of xylose produced from
hemicellulose. Lignocellulosic materials contain significant amounts of xylose, and releasing these
fermentable sugars can enhance biohydrogen production, rendering it more economically feasible to
derive biohydrogen from lignocellulose. Several studies have employed the two-stage sulfuric acid
hydrolysis method to achieve a high yield of sugars from lignocellulosic materials. For instance, in a
study on cassava stem hydrolysis, complete hydrolysis was attained at a dosage of 20 g CS L−1, with
glucan and xylan hydrolysis slightly reduced at higher dosages of 100 g CS·L−1 and 200 g CS·L−1.
However, as the photocatalytic process performs optimally at a slightly higher pH, a mildly basic
environment is more advantageous for biohydrogen production via photocatalytic reforming. Alkali
hydrolysis may prove beneficial in this scenario to adjust pH. Despite significant efforts to
comprehend the mechanistic and kinetic aspects of lignocellulosic-derived glucose and xylose
hydrolysis, further research is necessary to implement this technology on a large scale. Nonetheless,
numerous techniques, including steam reforming, water electrolysis, materials and catalyst
development, integration with renewable energy, and hydrogen storage, can be utilized to efficiently
produce hydrogen from waste. Various obstacles hinder the mass production of hydrogen in rural
areas, including sustainability and cost concerns. However, hydrogen production can be
accomplished using various treatment methods, including microbial electrolysis cells, biomass
gasification, water electrolysis, and bio-digestion. In rural settings, these treatments can establish a
more sustainable and energy-efficient hydrogen manufacturing system by leveraging locally available
resources and renewable energy sources.

3.2. Photofermentation

Optimization and maintenance of strict environmental conditions are necessary for
photofermentation, including the type of light source, light intensity, and lighting regime. The
composition of the fermentation media also plays a crucial role, with the addition of elements such
as Fe and Mo improving hydrogen yield (45–49). Nitrogenase activity is responsible for mediating
hydrogen evolution by photosynthetic bacteria. Purple nonsulfur bacteria, such as
Rhodobactersphaeroides, Rhodobactercapsulatus, and Rhodospirillum rubrum (49, 50), are the primary
microorganisms involved in hydrogen production through photofermentation. Organic acids like
acetate, butyrate, and lactate serve as the main substrates for this processas shown in the eqs. i-vi
(50, 51, 52, 53–63), and a wide range of effluents rich in organic acids can be utilized. However, it is
important to note that despite the potential for high yields, low light conversion efficiency (3-10%)
and production volumes can pose challenges in photofermentation. Previous studies have reported
hydrogen generation rates ranging from 145-160 mmol/h/L (53). Additionally, certain chemicals
such as iron, molybdenum, EDTA, vitamins, and buffer solutions have been found to have significant
positive effects on biohydrogen production rates (51–54). Table 4 provides an overview of hydrogen
yields achieved through photofermentation in the literature.
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Table 4. Hydrogen Yields Obtained by Photofermentation
Feedstock Culture H2 Yield

(mol H2/mol glucose equiv)
Refs

Corncob
Sorghum stover
Corn stover
Rice straw
Soybean stalk
Cotton stalk

Rhodospirillum rubrum,
Rhodobacter capsulatus,
Rhodopseudomonas palustris

229 mmol H2/L
149.67
145.67
140.45
131.12
118.46

(56)

Wheat straw R. capsulatus−PK 372 mL H2/L (57)

Cassava wastewater Mixed bacterial consortium 36.1 mmol
H2/L culture

(58)

Combined palm oil plus
pulp and paper mill
effluent

Rhodobacter sphaeroides
NCIMB 8253

8.72 mL H2/mL medium (59)

Sugar beet molasses R. capsulatus JP91 10.5 mol H2/mol sucrose (60)

Corn stalk pith Mixed bacterial consortium 2.61 mol H2/mol glucose (61)

3.3. Dark Fermentation

Fermentation stands out as one of the most effective techniques for sustainable biohydrogen
production, with dark fermentation being extensively researched. According to Nandi and Sengupta
(63), studies on anaerobic bacterial hydrogen generation initially emerged in the 1980s. Dark
fermentation holds precedence over photosynthetic processes due to its simplicity and higher
production rates, as emphasized by Chong et al. (2009) (64). Glucose, the primary compound in
lignocellulosic biomass, can undergo conversion into hydrogen. Theoretically, the conversion of 1
mole of glucose (C6H12O6) yields 12 moles of hydrogen. As noted by Ntaikou et al. (2010) (65)
and Sveinsdottir et al. (2011) (66), the fermentation pathway and the resultant products determine
the actual yield. Acetate and butyrate constitute over 80% of the end-products, as reported by Balat
and Kırtay (2010) (47). Other fermentation by-products include ethanol and lactic acid, which do
not contribute to hydrogen production, and propionic acid, which consumes hydrogen (49). For
instance, if acetic acid and butyric acid are the final products, the theoretical yield of hydrogen can be
calculated using Equations (vii) and (viii), respectively.

126
 Kothari and Pathania; Green Hydrogen Economy for Environmental Sustainability. Volume 2: Applications, Challenges, and Policies 

ACS Symposium Series; American Chemical Society: Washington, DC, 0. 



However, the yield of hydrogen from 1 mol of glucose is achieved at approximately 2.0-2.5
mol, which is lower than the expected theoretical yield (67). This lower yield can be attributed to
various factors such as the production of a mixture of acetate and butyrate, which contributes to the
hydrogen yield, the production of non-hydrogen forming or hydrogen-consuming end-products, or
the utilization of the feedstock substrate for microbial growth instead of organic acid formation (49).

Table 5. Hydrogen Yields Obtained by Dark Fermentation
Feedstock Culture H2 Yield

(mol H2/mol glucose equiv)
Refs

Corn stover Thermoanaerobacterium
thermosaccharolyticum
Mixed

2.24
1.53

(69,
70)

Napier grass Mixed 1.2 (71)

Wheat straw Caldicellulosiruptor saccharolyticus
Mixed
Clostridium sp. IODB03
Bacillus coagulans NCIM 2323 and Enterobacter
aerogens NCIM5139

3.8
1.0–2.54
2.52 mol/mol sugar
0.23–1.40 mol/mol
glucose

(72)
(73)
(74)
(75)

Barley hulls Clostridium thermocellum 1.24 (76)

Grass Clostridium AK14 0.8–0.9 (77)

Food waste Mixed 0.6–2.4 (78)

Vegetable waste Mixed 1.7 (79)

Miscanthus Thermotoga elfii
T. neapolitana
Caldicellulosiruptor saccharolyticus

1.1
3.2
3.4

(80)
(81)

Sweet sorghum
stalk

Rumicococcus albus 3.15 (65)

Bagasse Mixed 13.39 (82)

Maize leaves C. saccharolyticus 3.6 (72)

Rice straw Heat−treated sludge 0.44 mol/mol sugar (83)

Soybean straw Clostridium buytricum 47.65 mL/g substrate (84)

Various microbes, including species like Enterobacter, Thermoanaerobacterium, and
Thermotoga, are capable of conducting the fermentation process. The substrate, pH, and
temperature requirements of these microbes vary, leading to alterations in the metabolic pathways
they undertake and the resulting hydrogen yields (65). Studies on fermentation processes have
revealed that extremophilic bacteria, thriving in high-temperature conditions, may produce larger
quantities of hydrogen. In pure cultures, these bacteria can generate up to 4 mol of hydrogen and 2
mol of acetate. Their ability to tolerate increased hydrogen partial pressure, exhibit enhanced reaction
kinetics at high temperatures, and display reduced susceptibility to pollutants contribute to this
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phenomenon. Conversely, mesophilic and moderate thermophilic bacteria produce fewer ethanol,
lactic acid, or butyric acid byproducts when exposed to high hydrogen concentrations (66).

Dark fermentation, involving anaerobic bacteria converting organic matter into hydrogen, also
yields carbon dioxide, organic acids, and solvents as by-products. These by-products accumulate in
the medium since anaerobes cannot utilize them, causing a decline in medium pH and impeding
the achievement of maximum theoretically possible hydrogen yields (68). Furthermore, by-products
generated during initial biomass pretreatment, such as furfural and HMF, have been found to inhibit
microbial growth (66). Numerous investigations have explored the potential of hydrogen production
via fermentation. As outlined in Table 5, various pretreatment methods have been explored to obtain
hydrogen yields from diverse lignocellulosic biomass sources. However, the organic load in the
substrate persists during dark fermentation, reducing hydrogen yields as a substantial amount of
hydrogen is trapped in these molecules. Techniques such as implementing a second stage for
hydrogen extraction or producing high-value products from effluents, like polyhydroxyalkaonates,
can harness residual organic matter in the medium, increasing energy output and economic viability.

These techniques facilitate hydrogen generation from various types of cellulosic biomass;
however, achieving a high yield remains a challenging aspect due to the inherently low efficiency
of biomass-based cellulose fermentation. Therefore, in addition to pretreatment techniques, the
effective fermentation of waste biomass-based cellulose necessitates the use of selective bacteria with
genetic modifications.

4. Summary and Future Prospects

In summary, biohydrogen stands out as a promising alternative to fossil fuel-based hydrogen,
presenting a sustainable energy option with zero carbon emissions. Lignocellulose-derived
monosugars have garnered recognition as a valuable feedstock in biohydrogen production. A
comprehensive review has provided an overview of current material treatment approaches for
biohydrogen production from lignocellulose, successfully assessing various pretreatment
procedures, including hydrolysis and detoxification methods, while microbial fermentation emerges
as the most environmentally friendly post-treatment method. A thorough understanding of suitable
biomass lignocellulose, pretreatment procedures, and post-methods, along with the optimization
of operating parameters, is crucial to enhance conversion efficiencies and reduce costs. Therefore,
continuous extensive research is critically important to overcome limitations and enhance the
productivity of biohydrogen.
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